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ABSTRACT

The general linear programming problem is considered in which the
coefficients of the objJective function to be maximized are assuwed to be
random variables with a known multinormsl distribution. Three deterministic
reformulations involve meximizing the expected value, the a-fractile
(o fixed, 0 < @ < %), and the probability of exceeding & predetermined
level of payoff, respectively. In this paper the author's previous
work on "bi-criterion programs" is applied to derive an algorithm for
routinely and efficiently solving the second end third reformulations. A
by-product of the calculations in each case 1s the tradeoff-curve between
the criterion being maximized and expected payoff. The intimate relationships

between all three reformulations are illuminated.
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ON STOCHASTIC LINEAR PROGRAMMING

AM, Gesffrion

1. INTRODUCTION

Consider the problem

(1) Maximize ﬁtx subject to Ax £b ,

wvhere x 1s an n-vector, P is a random n-vector with e known distribution,
and the linear constraints are deterministic. x must be chosen knowing

only the distribution of P. Three deterministic reformulations of (l) are:

(2) Meximize E(x) subject to Ax <D,

where E denotes the expected value of ﬁtx;

(3) Meximize F (x) subject to Ax <,

where O <@ <1 is a predetermined constant and F; (x) 1s the

a-fractile of ﬁtx; and

(4) Maximize Pu(x) subject to Ax < b,
where P;(x) is probebility that ﬁtx equals or exceeds a predetermined
"espiration” level x of payoff. The expected value reformulation (2) has
the computational advantage that it leads to an ordinary linear prograem to
be solved, whereas the fractile and "sspiration” reformulations -- which can
be more realistic in certain situations -- lead to nonlinear progrems.

The purpose of this paper is two-fold: to apply the author's previous
work on "bi-criterion progrems" o as to ebtaln an algorithm for
routirely solving (3) or (4) by paremetric quadratic programming; and to

illuminate the intimate relationships between (2), (3) and (4)., The algorithm



presented here, although turning out to have much in common with certain
rrevious approaches to (3) or (4), offers a unified, rigorous, non-graphical,
and computetionally efficient approach to (3) and (4). It has the additional
advantage of yielding as a by-product of the calculations the tradeoff curve
between the criterion function being maximized and E(x).

For simplicity we assume that P i1s multinormal with mean vector
p and covariance matrix £, so that i)'tx is N(p.tx, th‘.x); that (2) has a
finite optimel value M; end that x'Zx > O for all feasible x.

We conclude this Introduction with some preliminary remarks on the
fractile and aspiration criteris, including a survey of known computational

approaches.,

The Fractile Criterion

Since the .5-fractile (i.e., the median)of a normally distributed
random varieble coincides with its mean, (3) with o« = .5 is identical with
(2)s Maximizing the a-fractile with « < .5 should appeal to some conserva-
tive decision-maekers because it tends to control the lower tail of the
distribution of payoffs.y

It is easy to show that

Foz(x) = p.tx + Q-l(cr) /xtEx ,

vhere & 1s the Standardized Normal Distribution Function. When
0<a < .5 as we assume henceforth, Q'l(a) <0 and (3) 1s a concave
program, since /xtTx 1s convex [9, p. 195]. Note, however, that the

criterion function is not differentisble when xPIx vanishes , thus limiting

y Cf. Baumol [3], who seems to be getting at this idea in the context
of the portfolio selection problem, which is a special but important
case of (1),




the applicability of gradient-type optimization procedures. Eisenberg (71,
Sinha [12], and others have stepped into the breach with theoretical results
that are designed to facilitate a computational solution.

Computational procedures for (3) have been offered by Kataoka [9],
vho proposed and partislly justified an iterative procedure that can ‘be'viewed
as a discretized variant of the algorithm derived here, and by Sinha 12},
who developed an elaborate specialized duality theory that leads to a
computational solution involving linear and quadratic programming. It can
also be solved by an obvious geometrical construction that requires the graph
of the (E,o0)- tradeoff curve arsociated with (1), i.e., the image of all
feasible x with the property that a higher value of p.tx can be attained
only st the expense of s higher value of v/ X'Zx, and a lower value of
/ xtTx only at the expense of a lower value of u.tx. Te (E,o)-tradeoff
curve is most conveniently cbtained by a square-root transformation from
the (E,oe)-tradeoff curve. The latter should be computed,as pointed out
by Markowitz (1c], by parametric quadratic programming. This use of paremetric
quadratic progremming is at the heart of the present approach to (3) and
(4), but we do not require a grarrical comstruction and only compute a
relevent subset of the (E,0°)- tradeoff curve.

The Aspiration Criterion

Clearly

P&x)=l-¢(£ﬁ(—) s Q(Ei'l"—) :
/xtEx /X

Since ¢ 4s strictly increasing, (4) has the same optimal solution set as

u.tx-n

(44) Maximize
/xtx

subject to Ax < b.



When the aspiration level u 1is taken as M (the optimal value of (2)),
it is easily seen that (4A) has an optimal value O eand that this value is
achieved for those feasible x for which utx = M. Hence (4A) with » =M
has the same optimal solution set as (2), and the maximum probability in (4)
is 4 (since #(0) = §). As before, we are interested in the conservative
decision-maker, who would undoubtedly take u < M. Such a choice 18 necessary
and sufficient for the maximum probebility in (4) to be > 0.5, and we assume
it henceforth.

The aspiration criterion program (4A) can be solved by a simple geometrical
construction noticed by Roy [11], who presented it for a special case, providing
that the (E,g)- tradeoff curve is available. The method can be modified to
work almost as easily with the (E,g2)- tradeoff curve, which as we pointed
out above is easier to compute.

See Charnes and Cooper [4] for additional discussion of the aspiration
criterion. They also show how to reduce (4A) to a progrem that is linear
except for one quadratic constraint. If this quadratic constraint were dealt
with by the standard trick of taking it up into the objective function with an
undetermined multiplier and aspplying quadratic programming, the result could

be an algorithm that closely resembles the one given here.

2, THE ALGORITHM

In this section we view (3) and (4) as if they were bi-criterion programs
end derive an algorithm for each by applying the following result from [8].

Let it be desired to solve

(5) Max;mize u(p,(£,(x))s p(£(x)) ),
X€e
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where X 1s a non-empty compact convex set in Rn, fl’ f2: pl(fl)’ Pe(f2)

are concave on X, Py and p, are strictly increasing on the image of

X under fl ard f2, respectively, u 1is non-decreasing and quasiconcave

(see, e.g., [1]) on the convex hull of the image of X under (pl(fl), p2(f2)):
and all functions are continuous. Think of wu(s+,*) as a utility function
defining a preference ordering over pairs of values of the two criterion
functions fl and f2, on wvhich the scale transformetions Py and P have
been performed. Assume that a parametric programming algorithm is available

for solving

(6) Meximize vy f£1(x) + (1-v) £,(x)
xeX

for each value of the parameter Y in the unit interval, and that the
resulting optimal solution function x*(Yy) wculd be continuous on [0,1],

Then the function
U(Y) = ulpy(£(x*(¥)) ), D £(x(¥)) ) )

is continuous and unimodal on [0,1], and if ¥* mexinmizes U(Y) on [0,1]
then x*(y*) is optimzl in (5).
Seclving (3)

Consider now (3). Put

X = {x: &x<b)
t

£,(x) = u'x
fe(x) = -x0Zx
p,(ry) = £y
p2(f2) S = "f2

u(py(£))s px(2,)) = py(£)) = 27H@) py(£,).

~ _%'-—vn?—".w—-—— Paaten 0~ Sk ansct oy s - . v
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It 1s easy to verify that all of the assumptions required of (5), which in

this case is identical to (3), are satisfied save one: the compactness of X.
certain

However, the only need for compactness is to ensure that / suprema are

achieved, The attainment of all suprema here follows from the non-negativity

of / xtTx , our essumption that (2) has a finite optimel value M, and

the fact (2, Th. 1.7) that a concave quadratic polynomial bounded above on

a convex rolyhedral set achieves its constrained supremum. Now (6) becomes

(1) Maximize Y u.tx - (1-y) xVix subject to Ax < b,

a parametric quedretic program. Several algorithms are available for it

{e.g., [10], [13], [5]), end they all yleld an optimal solution function

x*(v) that is continuous on [0,1]. Hence the method quoted sbove applies,

and we see how to solve (3) with the aid of any parametric quadratic progremming
code for (7).

To solve (3) one may solve (7) with ¥ = 12/ and decrease Y until the
unimodal function Fa(x*( Y)) achieves its maximum on (0,1]. When the maxi-
mizing Yy 1is reached,y say Y, » the parametric programming is stopped
because the optimel solution x*(y,) of (3) has been found. For more complete
details see (8], where the fact that the image of [0,1] under x*(y) 1is
piecewise linear is taken advantage of in an obvious way.

Solving (4)

The assumption x < M guarantees that the optimal value of (4A) is > 0.

Therefore one can restrict attention in (4A) to fessible x such that

_2/ For a reason that will beccme apparent in the next section, yY=1 1is a

natural starting point -- although any other value in the unit interval
could be used.

3/ 1If the maximizing value is not unique, let Y, be the lergest.




utx -x > 0. In thie region the maximend is quasi-concave. Put

X ={x: Ax<b, pbtx-x> 0]

wtx

£,(x)

f2(x) -xt5x

pl( fl) = fl-u.

plfp) = - /-1,

u(py(2)s py£,)) = py( )/ (-p(£,)).
It 1s easy to verify that all assumptions required of (5), which in this
case is identical to (4A), are satis®fied save the compactness X, As before,
this seeming difficulty is eliminated by the fact that all pertinent constrained

suprema are achieved, Furthermore, (6) is egain the parametric quadratic

1
program (7).i/ Thus to solve (4A) one may solve (7) for Yy = 1 and decrease

y until the unimodal function (u®x*(y)-x)/ /x*(V)Zx*(y) reaches its
maximum on [0,1]. When the maximizing vy 1is reached,-S/ say Yn s the optimal

solution x¥*( Vu) has been found. Again, consult [8] for details.

3. INTERFRETING THE INTERMEDIATE QUANTITIES

The algorithm for solving (3) or (4) given in the previous section
involves the computation of x*(y) (an optimal solution of the paremetric
quedratic progrem (7)) from right to left on the interval [%, 1]} in one case

and on [Yu.’ 1] in the other. Although x*(yd) and x¥( Yn) are optimal solutions

4/ Technically, (7) must now include the constraint utx-x > 0. Since we
shall teke Y to be decreasing from 1, this constrsint will never be
binding before termination and can therefore be dropped.

5/ If the maximizing value 1s rnot unique, let Y, be the lgrgest.
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to (3) end (4), the intermediate x¥Y) are also of interest. We shall show
in Theorems 3 and 4 of this section that the image in R® of [v,,1] under
(E(x*(v)), F&(x*(Y)) ) 4s the complete (E, F&)- tradeoff curve, and that
the image in R of [yh,ll under (E(x*(Y)),PK(x*(Y)) ) 1s the complete
(E, Ph)- tradeoff curve.é/ We also show in Th. 2 that each intermediate
x*(y) also solves (3) with a certain o« and (4) with a certain x.

It will be notationally convenient in the sequel to refer to the following

reparameterized version of (7):
(7A) Maximize u.tx - Bxtsx sutject to Ax < b,

where the parameter B ‘raverses [0,), For fixed B ¢ [0,), (TA) is
equivalent to {7) with y= (I+B)-l, and therefore has en optimal solution

x*( I%E ) which with some sbuse of notation we henceforth call simply x*(8).

Let B, = (l-xy)/%, and B = (l-y&)/yh. Then (3) or (4) are solved by
computing x*(B) from left to right on [O,Q,] or [O’Qu]’ respectively.
Theorem 1:
(1). Let « be fixed in the unit interval. Every optimel solution of
(3) 15 also an optimal solution of (4) with » equal to the
optimal velue of (3).
(41). Let » Dbe fixed arpitrarily. Every optimal solution of (4) is
also an optimal solution of (3) with (1<) equal to the optimal

value of (4).

6/ Naturally x*(y) also yields a portion of the (E,ga)-tradeoff curve, but
this fact is of little more than passing interest here.
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Proof: Let x and x* be feasible. Then
utx + @'l(a) /X% < utx* + é'l(d) ¥*TH
if and only if
t t -1 /h;pt——' -1 =
BX - pox* - () /R < - 87 (e) /XX
if and only if
utx-utx*-é'l(a) JXFOTR
/X

if and only if

< -#7Ya)

utx-(utx**"?-l(d) /thx_*) < wExe - (utx**'é-l(cs') /X% Tx¥)
/x"Tx Vb

Hence for fixed x* the first inequality holds for all feasible x 1if and

only if the last holds., The theorem follows.

This theorem points up a reciprocity between the fractile and aspiration
criteria that holds in much more general circumstances than the one con-
sidered here.

Theorem 2:
For B> 0, x*(B) (an optimal solution of (7A)) is also

¢ (-28 /x*B)Cx*(p) )

(1), optimal in (3) with «

(11). optimel in (4) with « ubx*(8) - 2Bx*(8)tzx*(B).

Proof: Part (1), which is essentially equivalent to Th. 3 in [9], cen be
proven by setting up the appropriate identification between the Kuhn-Tucker
corditicns for (TA) and for (3). Part (11) follows from part (i) and

Theorem l.1.
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These two theorems give an interesting interpretation to the intermediate
x*(B). In the course of solving (3) with o = o (0 < a, < %) by the method
of section 2, one automatically solves (3) with each value of « between

@, and % and (4) with esch value of x between Fa(x*(Ba )) (which
[0} (o]

must be < M) and M. Similarly, in the course of solving (4) with x = u,
(uo < M) by the method of section 2, one automatically solves (4) with

each value of » between x, and M and (3) with each value of & between

(o]

1-P  {x*(B )) (which must be < %) end #.
V..o KO

Lemne:

The function 2mtl—bcm)' is non-decreasing on[O,Sd ]J. It assv 3
the value O only at B=0 and the value -é-l(a!) only at =g .
Proof: The proof requires two applications of a method often used for
obtaining similar monotonicity results in parametric programming.

0

! t
Let Boand B satisfy 0<E° <3 SEQ,.

First we derive the preliminary inequality
x*(8' )oex#(B') < x¥(B)Pmxn(6°).
By the definitions of x*(B°) and x*(B'), we have
pExx(B1) - BOx*(B')PEx#(B1) < wOx*(80) - BOx¥(B%)tEx(gO)
and
wbx*(8°) - Bra(BO)trx*(BO) < ubx*(B') - B'xx(B')ERH(;1),
Surming and rearranging these inequalities, we find
(B'-B%)(x*(B')® mx*(B') - x*(8°)=x*(8°)) < o,

which upon division by (B'-B°) ylelds the preliminary inequality.
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By Th. 2.1, x*(8°) raximizes p.tx - 2B (BPYt ¥ B°) /xPZx over
all feasible. x. A similar assertion holds for x*(8'). Applying the

gbove argument to such programs in lieu of (TA), one obtains
(8" /3R(BT)SHET) -8/xHE°) VEH(80) ) (/ARETIHAHET)
- /XYY =A E0) < o,

The preliminery inequality implies that the second factor is either negative

or zero, In the first case, division by it ylelds that the first factor is
!

> 0; in the second case, the first factor is > O because B -8% 0. Thus

the first factor must be non-negative, and the desired monotonicity of

2ﬂ/x*(§7t2xi(B) is established.

That the value O is assumed only at B=0 follows from our assumption
that thx > 0 for all feasible x ; that the value -@'l(d) is assumed
only at B, follows from the nature of our algorithm for solving (3).

The proof is complete.

Theorem 3:
traverses t o

as B/ [0, B,l, (n'x*(B), Fb(x*(B))) traces in R° the complete
(E,Ey)-tradeoff curve.
Froof: Since x*(0) is optimal in (2), x*(B,) 4s optimal in (3), and
(&tx*(e): F&(x*(B))) on {0, qy] determines a curve by the continuity of
x*(B8), it is sufficient to show that x*(R) is (E, F_)-efficient on
(O,BQB. To show this it ia clearly sufficient to show that for 0< B < Ba
there exists a scalar 1,0 < A < 1, such that x*(3) maximizes
(l-k)utx+K Fa(x) over all feasible x . This maximand simplifies to

utx+l§'1(d) /X T, For kz2ﬁ/§‘(§7tf§;T377(-Q'l(d)), x*(8) indeed max-

imizes it by Th. 2.1 . The Lemma implies that this choice of A satisfies
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0< A< 1. Hence x*¥B) is (E,F&)-efficient for 0<B< B8, and
the proof is complete.
Theorem U:

As B traverses [0, Bu], (utx*(@), Pu(x*(ﬁ))) traces in R° the
complete (E, PK)-tradeoff curve.
Proof: Since x*(0) is optimal in (2), x*(Gn) is optimal in (4), and
(utx*(B), P%(x*(ﬁ))) on [0, Bn] determines a curve by the continuity of
x*(B), it 1s enough to show that x*(8) 1s (E, Pnleffjcient on (O,Bu). To
show this we shall rescrt to the definiticn of (L,P%)-efficiency erd dcmonstrate:

for 0 < Bg BK: one has

(8) P, (x) < B (x%(5))

for all feasible x such that
t t

(9) wx > x*(B) ,

with equality in (&) impling equality in (9) .
Clearly one may uce (utx-u)/ /X in place of PK(x) in (8)., Hence
(8) can be written
(8A) (w¥xx)/ /X < (W(R)-n)/ /AR D) VTH(BY
The method of demonstration will use the theory of linear programming, after
some menipulation.
Let B satisfy 0< B < B% . By Th, 2.1,
(10) " x-28 /xF(B) E(B) /% T < kox*(8)-20xx(P) PEx(p)

for all feasible x. It is therefore sufficient to show (8A) for all

peirs (ptx, /x¥Ex) satisfying (9) and (10), with equality in (8A)

implying equality in (9). It 1is now convenient to change notation.

Let Yy = utx - utx*(B), Yo = /?tEE—. Then the proposition to be shown can

be written as follows after rearranging (8A):
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(8B) ¥y VR BICE(B) - (nEx*(B)-n)yp <-(ubx*(B)-x) VXM BICIX¥(B) .

for all (yl, ¥,) > 0 satisfying

(104) ¥y - 25\/k*(85t2x*(8) Yo < -2Bx*(5)tik*(5) ’

vith equality in (8B) implying yl=0. The identity of a simple linear
progrem now becomes apparent, with the left-hand side of (8B) serving as
e linear objective function to be maximized and (10A) serving as a linear
constraint. This lincar program is feasible (e.g., take ¥1=0 end

¥y = Jx (B)VCy*(B) ). The object then becomes to show that the optimal
value of this linear program is equal to the right-hand side of (8B), and
that y, necescarily vaniches in any feasible (yl,ye) pair that achieves
this value. By the Dual Theorem and Complementary Sle~" -ss Theorem
of linear programming [6], i1t is sufficient to demonstrate tnat the dual
linear program is feasible, that its optimal value equals the right-hand
side of (8B), and that the dual constraint corresponding to y,; necessarily
is satisfied with strict inequality at every optimal dual solution. The
dual linear progrem is:

Minimize (-28x*(B)tEx*(p)) 2

subject to 2z >V x*(B) Lx*(L)

(-28 /xR EHB) )z > - (ubxx(B) - n)

z>0



From our sssumption that i < M, the continuity of x*(8) on [O’Bu]’ the

nature of our algorithm for (4), and Th. 2.,ii, it follows that

n < utyn(g) - 28x*(B)tzx*(B) on [0, su). With this inequality it is

now easy to verify that z* = (ptx*(8) - w)/ 28 /x*(B)VIx*(B) 4is the
unique optimal solution, and consequently that the dual program has the

requisite properties. This completes the demonstration.

Theorems 3 enl L4 reveal why the initial value of B was chosen to
be O, Any non-nerctive initial value coulcd bhe chosen and the algorithm
would still solve (3) (resp. (4)), perhaps even with lesc calculation; but
if the initiel valus excecds Qy(resp. Bn)’ then the irtcrmediate

¥»*(B) will no longor be (E,F&) (resp. (E’Pn)) - efficient.

= -y S T Ty > e m—— T . “’W =k = -
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